Audio encryption algorithm employing data-parallel approach
Abstract
Keywords
Full Text:
PDFReferences
Rijmen, V.; Daemen, J. Advanced encryption standard (AES). In Federal Information Processing Standards Publications 197; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001; Available online: https://csrc.nist.gov/publications/ detail/fips/197/final (accessed on 1 September 2021).
Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 1978, 21, 120–126.
Ghasemzadeh, A.; Esmaeili, E. A novel method in audio message encryption based on a mixture of chaos function. Int. J. Speech Technol. 2017, 20, 829–837.
Stoyanov, B., Ivanova, T. (2021). Novel implementation of audio encryption using pseudorandom byte generator. applied sciences, 11(21), 10190.
J. Liu, D. Song, Y. Xu, A parallel encryption algorithm for dual-core processor based on chaotic map, in: S. S. Mahmoud, Z. Zeng, Y. Li (Eds.), Fourth International Conference on Machine Vision (ICMV 2011): Computer Vision and Image Analysis; Pattern
Recognition and Basic Technologies, volume 8350, International Society for Optics and Photonics, SPIE, 2012, pp. 73 – 79. doi:10.1117/12.920226.
W. Wang, X. Wang, D. Song, A parallel chaotic cryptosystem for dual-core processor, in: The 2nd International Conference on Information Science and Engineering, 2010, pp.920–923. doi:10.1109/ICISE.2010.5689747.
J. Liu, H. Zhang, D. Song, G. Sun, W. Bi, M. K. Buza, A parallel encryption algorithm of the logistic map for multicore with openmp, in: Ifost, volume 2, 2013, pp. 47–50. doi:10.1109/IFOST.2013.6616857.
D. Burak, Parallelization of the block encryption algorithm based on logistic map, Przegląd Elektrotechniczny 88 (2012) 198–200.
M. J. Rostami, A. Shahba, S. Saryazdi, H. Nezamabadi-pour, A novel parallel image encryption with chaotic windows based on logistic map, Computers & Electrical Engineering 62 (2017) 384–400. doi:10.1016/j.compeleceng.2017.04.004.11
Stoyanov, B., & Dobrev, D. (2022). Parallel Data Encryption Based on Tinkerbell and Ikeda Chaotic Functions. CEUR-WS 3191, 36-44.
K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Optics Communications 30 (1979) 257–261. doi:10.1016/0030-4018(79)90090-7.
K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Physical Review Letters 45 (1980) 709–712. doi:10.1103/PhysRevLett.45.709.
K. T. Alligood, T. D. Sauer, J. A. Yorke, D. Chillingworth, Chaos: an introduction to dynamical systems, Springer, New York, 1996.
IEEE Computer Society. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754; IEEE: New York, NY, USA, 1985.
Jozwiak, M.; Monnet, X.; Teboul, J.L. Pressure waveform analysis. Anesth. Analg. 2018, 126, 1930–1933.
Taylor, R. Interpretation of the correlation coefficient: a basic review. J. Diagnost. Med. Sonogr. 1990, 6, 35–39.
Johnson, D.H. Signal-to-noise ratio. Scholarpedia 2006, 1, 2088.
Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience, Melbourne, Australia, 5–7 July 2012; pp. 37–38
Sathiyamurthi, P.; Ramakrishnan, S. Speech encryption using chaotic shift keying for secured speech communication. EURASIP J. Audio Speech Music Process. 2017, 2017, 1–11.
Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530.
Farsana, F.; Devi, V.; Gopakumar, K. An audio encryption scheme based on Fast Walsh Hadamard Transform and mixed chaotic keystreams. Appl. Comput. Inform. 2019.
DOI: http://dx.doi.org/10.5281/zenodo.14650067
Refbacks
- There are currently no refbacks.